
Python Programming, 2/e 1

Python Programming:
An Introduction
To Computer Science

Chapter 8
Loop Structures and Booleans

Python Programming, 2/e 2

Objectives
n  To understand the concepts of definite

and indefinite loops as they are realized
in the Python for and while
statements.

n  To understand the programming
patterns interactive loop and sentinel
loop and their implementations using a
Python while statement.

Python Programming, 2/e 3

Objectives
n  To understand the programming

pattern end-of-file loop and ways of
implementing such loops in Python.

n  To be able to design and implement
solutions to problems involving loop
patterns including nested loop
structures.

Python Programming, 2/e 4

Objectives
n  To understand the basic ideas of

Boolean algebra and be able to analyze
and write Boolean expressions involving
Boolean operators.

Python Programming, 2/e 5

For Loops: A Quick Review
n  The for statement allows us to iterate

through a sequence of values.
n  for <var> in <sequence>:
 <body>

n  The loop index variable var takes on
each successive value in the sequence,
and the statements in the body of the
loop are executed once for each value.

Python Programming, 2/e 6

For Loops: A Quick Review
n  Suppose we want to write a program that can

compute the average of a series of numbers
entered by the user.

n  To make the program general, it should work
with any size set of numbers.

n  We don’t need to keep track of each number
entered, we only need know the running sum
and how many numbers have been added.

Python Programming, 2/e 7

For Loops: A Quick Review
n  We’ve run into some of these things

before!
n  A series of numbers could be handled by

some sort of loop. If there are n numbers,
the loop should execute n times.

n  We need a running sum. This will use an
accumulator.

Python Programming, 2/e 8

For Loops: A Quick Review
n  Input the count of the
numbers, n

n  Initialize sum to 0

n  Loop n times
n  Input a number, x

n  Add x to sum

n  Output average as sum/n

Python Programming, 2/e 9

For Loops: A Quick Review
average1.py
A program to average a set of numbers

Illustrates counted loop with accumulator

def main():

 n = eval(input("How many numbers do you have? "))

 sum = 0.0

 for i in range(n):

 x = eval(input("Enter a number >> "))
 sum = sum + x

 print("\nThe average of the numbers is", sum / n)

n  Note that sum is initialized to 0.0 so that sum/n returns a float!

Python Programming, 2/e 10

For Loops: A Quick Review
How many numbers do you have? 5
Enter a number >> 32

Enter a number >> 45

Enter a number >> 34

Enter a number >> 76

Enter a number >> 45

The average of the numbers is 46.4

Python Programming, 2/e 11

Indefinite Loops
n  That last program got the job done, but you

need to know ahead of time how many
numbers you’ll be dealing with.

n  What we need is a way for the computer to
take care of counting how many numbers
there are.

n  The for loop is a definite loop, meaning that
the number of iterations is determined when
the loop starts.

Python Programming, 2/e 12

Indefinite Loops
n  We can’t use a definite loop unless we

know the number of iterations ahead of
time. We can’t know how many
iterations we need until all the numbers
have been entered.

n  We need another tool!
n  The indefinite or conditional loop keeps

iterating until certain conditions are
met.

Python Programming, 2/e 13

Indefinite Loops
n  while <condition>:
 <body>

n  condition is a Boolean expression, just like
in if statements. The body is a sequence of
one or more statements.

n  Semantically, the body of the loop executes
repeatedly as long as the condition remains
true. When the condition is false, the loop
terminates.

Python Programming, 2/e 14

Indefinite Loops

n  The condition is tested at the top of the loop.
This is known as a pre-test loop. If the
condition is initially false, the loop body will
not execute at all.

Python Programming, 2/e 15

Indefinite Loop
n  Here’s an example of a while loop

that counts from 0 to 10:
i = 0
while i <= 10:
 print(i)
 i = i + 1

n  The code has the same output as this
for loop:
for i in range(11):
 print(i)

Python Programming, 2/e 16

Indefinite Loop
n  The while loop requires us to manage

the loop variable i by initializing it to 0
before the loop and incrementing it at
the bottom of the body.

n  In the for loop this is handled
automatically.

Python Programming, 2/e 17

Indefinite Loop
n  The while statement is simple, but yet

powerful and dangerous – they are a
common source of program errors.

n  i = 0
while i <= 10:
 print(i)

n  What happens with this code?

Python Programming, 2/e 18

Indefinite Loop
n  When Python gets to this loop, i is

equal to 0, which is less than 10, so the
body of the loop is executed, printing 0.
Now control returns to the condition,
and since i is still 0, the loop repeats,
etc.

n  This is an example of an infinite loop.

Python Programming, 2/e 19

Indefinite Loop
n  What should you do if you’re caught in

an infinite loop?
n  First, try pressing control-c
n  If that doesn’t work, try control-alt-delete
n  If that doesn’t work, push the reset

button!

Python Programming, 2/e 20

Interactive Loops
n  One good use of the indefinite loop is to write

interactive loops. Interactive loops allow a
user to repeat certain portions of a program
on demand.

n  Remember how we said we needed a way for
the computer to keep track of how many
numbers had been entered? Let’s use
another accumulator, called count.

Python Programming, 2/e 21

Interactive Loops
n  At each iteration of the loop, ask the user if

there is more data to process. We need to
preset it to “yes” to go through the loop the
first time.

n  set moredata to “yes”
while moredata is “yes”
 get the next data item
 process the item
 ask user if there is moredata

Python Programming, 2/e 22

Interactive Loops
n  Combining the interactive loop pattern with

accumulators for sum and count:
n  initialize sum to 0.0
initialize count to 0
set moredata to “yes”
while moredata is “yes”
 input a number, x
 add x to sum
 add 1 to count
 ask user if there is moredata
output sum/count

Python Programming, 2/e 23

Interactive Loops
average2.py
A program to average a set of numbers
Illustrates interactive loop with two accumulators

def main():
 moredata = "yes"
 sum = 0.0
 count = 0
 while moredata[0] == 'y':
 x = eval(input("Enter a number >> "))
 sum = sum + x
 count = count + 1
 moredata = input("Do you have more numbers (yes or no)? ")
 print("\nThe average of the numbers is", sum / count)

n  Using string indexing (moredata[0]) allows us to
accept “y”, “yes”, “yeah” to continue the loop

Python Programming, 2/e 24

Interactive Loops
Enter a number >> 32
Do you have more numbers (yes or no)? y
Enter a number >> 45
Do you have more numbers (yes or no)? yes
Enter a number >> 34
Do you have more numbers (yes or no)? yup
Enter a number >> 76
Do you have more numbers (yes or no)? y
Enter a number >> 45
Do you have more numbers (yes or no)? nah

The average of the numbers is 46.4

Python Programming, 2/e 25

Sentinel Loops
n  A sentinel loop continues to process

data until reaching a special value that
signals the end.

n  This special value is called the sentinel.
n  The sentinel must be distinguishable

from the data since it is not processed
as part of the data.

Python Programming, 2/e 26

Sentinel Loops
n  get the first data item

while item is not the sentinel
 process the item
 get the next data item

n  The first item is retrieved before the loop
starts. This is sometimes called the priming
read, since it gets the process started.

n  If the first item is the sentinel, the loop
terminates and no data is processed.

n  Otherwise, the item is processed and the next
one is read.

Python Programming, 2/e 27

Sentinel Loops
n  In our averaging example, assume we

are averaging test scores.
n  We can assume that there will be no

score below 0, so a negative number
will be the sentinel.

Python Programming, 2/e 28

Sentinel Loops
average3.py
A program to average a set of numbers

Illustrates sentinel loop using negative input as sentinel

def main():

 sum = 0.0

 count = 0

 x = eval(input("Enter a number (negative to quit) >> "))

 while x >= 0:

 sum = sum + x

 count = count + 1

 x = eval(input("Enter a number (negative to quit) >> "))

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 29

Sentinel Loops
Enter a number (negative to quit) >> 32
Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> 34
Enter a number (negative to quit) >> 76

Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> -1

The average of the numbers is 46.4

Python Programming, 2/e 30

Sentinel Loops
n  This version provides the ease of use of

the interactive loop without the hassle
of typing ‘y’ all the time.

n  There’s still a shortcoming – using this
method we can’t average a set of
positive and negative numbers.

n  If we do this, our sentinel can no longer
be a number.

Python Programming, 2/e 31

Sentinel Loops
n  We could input all the information as

strings.
n  Valid input would be converted into

numeric form. Use a character-based
sentinel.

n  We could use the empty string (“”)!

Python Programming, 2/e 32

Sentinel Loops
initialize sum to 0.0

initialize count to 0
input data item as a string, xStr

while xStr is not empty

 convert xStr to a number, x

 add x to sum

 add 1 to count
 input next data item as a string, xStr

Output sum / count

Python Programming, 2/e 33

Sentinel Loops
average4.py
A program to average a set of numbers

Illustrates sentinel loop using empty string as sentinel

def main():

 sum = 0.0

 count = 0

 xStr = input("Enter a number (<Enter> to quit) >> ")

 while xStr != "":

 x = eval(xStr)

 sum = sum + x

 count = count + 1

 xStr = input("Enter a number (<Enter> to quit) >> ")

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 34

Sentinel Loops
Enter a number (<Enter> to quit) >> 34
Enter a number (<Enter> to quit) >> 23

Enter a number (<Enter> to quit) >> 0

Enter a number (<Enter> to quit) >> -25

Enter a number (<Enter> to quit) >> -34.4

Enter a number (<Enter> to quit) >> 22.7

Enter a number (<Enter> to quit) >>

The average of the numbers is 3.38333333333

Python Programming, 2/e 35

File Loops
n  The biggest disadvantage of our

program at this point is that they are
interactive.

n  What happens if you make a typo on
number 43 out of 50?

n  A better solution for large data sets is to
read the data from a file.

Python Programming, 2/e 36

File Loops
average5.py
Computes the average of numbers listed in a file.

def main():

 fileName = input("What file are the numbers in? ")

 infile = open(fileName,'r')

 sum = 0.0

 count = 0

 for line in infile.readlines():

 sum = sum + eval(line)

 count = count + 1

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 37

File Loops
n  Many languages don’t have a

mechanism for looping through a file
like this. Rather, they use a sentinel!

n  We could use readline in a loop to
get the next line of the file.

n  At the end of the file, readline
returns an empty string, “”

Python Programming, 2/e 38

File Loops
n  line = infile.readline()

while line != ""
 #process line

 line = infile.readline()

n  Does this code correctly handle the case
where there’s a blank line in the file?

n  Yes. An empty line actually ends with
the newline character, and readline
includes the newline. “\n” != “”

Python Programming, 2/e 39

File Loops
average6.py
Computes the average of numbers listed in a file.

def main():
 fileName = input("What file are the numbers in? ")
 infile = open(fileName,'r')
 sum = 0.0
 count = 0
 line = infile.readline()
 while line != "":
 sum = sum + eval(line)
 count = count + 1
 line = infile.readline()
 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 40

Nested Loops
n  In the last chapter we saw how we

could nest if statements. We can also
nest loops.

n  Suppose we change our specification to
allow any number of numbers on a line
in the file (separated by commas),
rather than one per line.

Python Programming, 2/e 41

Nested Loops
n  At the top level, we will use a file-

processing loop that computes a
running sum and count.

sum = 0.0

count = 0

line = infile.readline()
while line != "":

 #update sum and count for values in line

 line = infile.readline()

print("\nThe average of the numbers is", sum/count)

Python Programming, 2/e 42

Nested Loops
n  In the next level in we need to update the
sum and count in the body of the loop.

n  Since each line of the file contains one or
more numbers separated by commas, we can
split the string into substrings, each of which
represents a number.

n  Then we need to loop through the substrings,
convert each to a number, and add it to sum.

n  We also need to update count.

Python Programming, 2/e 43

Nested Loops
n  for xStr in line.split(","):

 sum = sum + eval(xStr)
 count = count + 1

n  Notice that this for statement uses
line, which is also the loop control
variable for the outer loop.

Python Programming, 2/e 44

Nested Loops
average7.py
Computes the average of numbers listed in a file.
Works with multiple numbers on a line.

import string

def main():
 fileName = input("What file are the numbers in? ")
 infile = open(fileName,'r')
 sum = 0.0
 count = 0
 line = infile.readline()
 while line != "":
 for xStr in line.split(","):
 sum = sum + eval(xStr)
 count = count + 1
 line = infile.readline()
 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 45

Nested Loops
n  The loop that processes the numbers in each

line is indented inside of the file processing
loop.

n  The outer while loop iterates once for each
line of the file.

n  For each iteration of the outer loop, the inner
for loop iterates as many times as there are
numbers on the line.

n  When the inner loop finishes, the next line of
the file is read, and this process begins again.

Python Programming, 2/e 46

Nested Loops
n  Designing nested loops –

n  Design the outer loop without worrying
about what goes inside

n  Design what goes inside, ignoring the outer
loop.

n  Put the pieces together, preserving the
nesting.

Python Programming, 2/e 47

Computing with Booleans
n  if and while both use Boolean

expressions.
n  Boolean expressions evaluate to True

or False.
n  So far we’ve used Boolean expressions

to compare two values, e.g.
(while x >= 0)

Python Programming, 2/e 48

Boolean Operators
n  Sometimes our simple expressions do

not seem expressive enough.
n  Suppose you need to determine

whether two points are in the same
position – their x coordinates are equal
and their y coordinates are equal.

Python Programming, 2/e 49

Boolean Operators
n  if p1.getX() == p2.getX():

 if p1.getY() == p2.getY():
 # points are the same
 else:
 # points are different
else:
 # points are different

n  Clearly, this is an awkward way to evaluate
multiple Boolean expressions!

n  Let’s check out the three Boolean operators
and, or, and not.

Python Programming, 2/e 50

Boolean Operators
n  The Boolean operators and and or are

used to combine two Boolean
expressions and produce a Boolean
result.

n  <expr> and <expr>

n  <expr> or <expr>

Python Programming, 2/e 51

Boolean Operators
n  The and of two expressions is true exactly

when both of the expressions are true.
n  We can represent this in a truth table.

P Q P and Q
T T T
T F F
F T F
F F F

Python Programming, 2/e 52

Boolean Expressions
n  In the truth table, P and Q represent

smaller Boolean expressions.
n  Since each expression has two possible

values, there are four possible
combinations of values.

n  The last column gives the value of P
and Q.

Python Programming, 2/e 53

Boolean Expressions
n  The or of two expressions is true when

either expression is true.

P Q P or Q
T T T
T F T

F T T
F F F

Python Programming, 2/e 54

Boolean Expressions
n  The only time or is false is when both

expressions are false.
n  Also, note that or is true when both

expressions are true. This isn’t how we
normally use “or” in language.

Python Programming, 2/e 55

Boolean Operators
n  The not operator computes the opposite of

a Boolean expression.
n  not is a unary operator, meaning it

operates on a single expression.

P not P
T F
F T

Python Programming, 2/e 56

Boolean Operators
n  We can put these operators together to

make arbitrarily complex Boolean
expressions.

n  The interpretation of the expressions
relies on the precedence rules for the
operators.

Python Programming, 2/e 57

Boolean Operators
n  Consider a or not b and c
n  How should this be evaluated?
n  The order of precedence, from high to low, is
not, and, or.

n  This statement is equivalent to
(a or ((not b) and c))

n  Since most people don’t memorize the the
Boolean precedence rules, use parentheses to
prevent confusion.

Python Programming, 2/e 58

Boolean Operators
n  To test for the co-location of two points,

we could use an and.
n  if p1.getX() == p2.getX() and p2.getY() ==

p1.getY():
 # points are the same
else:
 # points are different

n  The entire condition will be true only
when both of the simpler conditions are
true.

Python Programming, 2/e 59

Boolean Operators
n  Say you’re writing a racquetball simulation.

The game is over as soon as either player has
scored 15 points.

n  How can you represent that in a Boolean
expression?

n  scoreA == 15 or scoreB == 15

n  When either of the conditions becomes true,
the entire expression is true. If neither
condition is true, the expression is false.

Python Programming, 2/e 60

Boolean Operators
n  We want to construct a loop that

continues as long as the game is not
over.

n  You can do this by taking the negation
of the game-over condition as your loop
condition!

n  while not(scoreA == 15 or scoreB == 15):
 #continue playing

Python Programming, 2/e 61

Boolean Operators
n  Some racquetball players also use a

shutout condition to end the game,
where if one player has scored 7 points
and the other person hasn’t scored yet,
the game is over.

n  while not(scoreA == 15 or scoreB == 15 or \
(scoreA == 7 and scoreB == 0) or (scoreB == 7 and scoreA == 0):
 #continue playing

Python Programming, 2/e 62

Boolean Operators
n  Let’s look at volleyball scoring. To win,

a volleyball team needs to win by at
least two points.

n  In volleyball, a team wins at 15 points
n  If the score is 15 – 14, play continues,

just as it does for 21 – 20.
n  (a >= 15 and a - b >= 2) or (b >= 15 and b - a >= 2)

n  (a >= 15 or b >= 15) and abs(a - b) >= 2

Python Programming, 2/e 63

Boolean Algebra
n  The ability to formulate, manipulate,

and reason with Boolean expressions is
an important skill.

n  Boolean expressions obey certain
algebraic laws called Boolean logic or
Boolean algebra.

Python Programming, 2/e 64

Boolean Algebra

n  and has properties similar to multiplication
n  or has properties similar to addition
n  0 and 1 correspond to false and true,

respectively.

Algebra Boolean algebra

a * 0 = 0 a and false == false
a * 1 = a a and true == a
a + 0 = a a or false == a

Python Programming, 2/e 65

Boolean Algebra
n  Anything ored with true is true:

a or true == true

n  Both and and or distribute:
a or (b and c) == (a or b) and (a or c)
a and (b or c) == (a and b) or (a and c)

n  Double negatives cancel out:
not(not a) == a

n  DeMorgan’s laws:
not(a or b) == (not a) and (not b)
not(a and b) == (not a) or (not b)

Python Programming, 2/e 66

Boolean Algebra
n  We can use these rules to simplify our

Boolean expressions.
n  while not(scoreA == 15 or scoreB == 15):

 #continue playing

n  This is saying something like “While it is not
the case that player A has 15 or player B has
15, continue playing.”

n  Applying DeMorgan’s law:
while (not scoreA == 15) and (not scoreB == 15):
 #continue playing

Python Programming, 2/e 67

Boolean Algebra
n  This becomes:

while scoreA != 15 and scoreB != 15
 # continue playing

n  Isn’t this easier to understand? “While
player A has not reached 15 and player
B has not reached 15, continue
playing.”

Python Programming, 2/e 68

Boolean Algebra
n  Sometimes it’s easier to figure out when a

loop should stop, rather than when the loop
should continue.

n  In this case, write the loop termination
condition and put a not in front of it. After a
couple applications of DeMorgan’s law you
are ready to go with a simpler but equivalent
expression.

Python Programming, 2/e 69

Other Common Structures
n  The if and while can be used to

express every conceivable algorithm.
n  For certain problems, an alternative

structure can be convenient.

Python Programming, 2/e 70

Post-Test Loop
n  Say we want to write a program that is

supposed to get a nonnegative number
from the user.

n  If the user types an incorrect input, the
program asks for another value.

n  This process continues until a valid
value has been entered.

n  This process is input validation.

Python Programming, 2/e 71

Post-Test Loop
n  repeat

 get a number from the user
until number is >= 0

Python Programming, 2/e 72

Post-Test Loop
n  When the condition test comes after the

body of the loop it’s called a post-test
loop.

n  A post-test loop always executes the
body of the code at least once.

n  Python doesn’t have a built-in
statement to do this, but we can do it
with a slightly modified while loop.

Python Programming, 2/e 73

Post-Test Loop
n  We seed the loop condition so we’re

guaranteed to execute the loop once.
n  number = -1

while number < 0:
 number = eval(input("Enter a positive number:
"))

n  By setting number to –1, we force the
loop body to execute at least once.

Python Programming, 2/e 74

Post-Test Loop
n  Some programmers prefer to simulate a

post-test loop by using the Python
break statement.

n  Executing break causes Python to
immediately exit the enclosing loop.

n  break is sometimes used to exit what
looks like an infinite loop.

Python Programming, 2/e 75

Post-Test Loop
n  The same algorithm implemented with a
break:
while True:
 number = eval(input("Enter a positive number:
"))
 if x >= 0: break # Exit loop if number is valid

n  A while loop continues as long as the
expression evaluates to true. Since
True always evaluates to true, it looks
like an infinite loop!

Python Programming, 2/e 76

Post-Test Loop
n  When the value of x is nonnegative, the
break statement executes, which
terminates the loop.

n  If the body of an if is only one line
long, you can place it right after the :!

n  Wouldn’t it be nice if the program gave
a warning when the input was invalid?

Python Programming, 2/e 77

Post-Test Loop
n  In the while loop version, this is

awkward:
number = -1
while number < 0:
 number = eval(input("Enter a positive number: "))
 if number < 0:
 print("The number you entered was not positive")

n  We’re doing the validity check in two
places!

Python Programming, 2/e 78

Post-Test Loop
n  Adding the warning to the break

version only adds an else statement:
while True:
 number = eval(input("Enter a positive number: "))
 if x >= 0:
 break # Exit loop if number is valid
 else:
 print("The number you entered was not positive.")

Python Programming, 2/e 79

Loop and a Half
n  Stylistically, some programmers prefer

the following approach:
while True:
 number = eval(input("Enter a positive number:
"))
 if x >= 0: break # Loop exit
 print("The number you entered was not positive")

n  Here the loop exit is in the middle of
the loop body. This is what we mean by
a loop and a half.

Python Programming, 2/e 80

Loop and a Half
n  The loop and a half is an elegant way to

avoid the priming read in a sentinel
loop.

n  while True:
 get next data item
 if the item is the sentinel: break
 process the item

n  This method is faithful to the idea of the
sentinel loop, the sentinel value is not
processed!

Python Programming, 2/e 81

Loop and a Half

Python Programming, 2/e 82

Loop and a Half
n  To use or not use break. That is the

question!
n  The use of break is mostly a matter of

style and taste.
n  Avoid using break often within loops,

because the logic of a loop is hard to
follow when there are multiple exits.

Python Programming, 2/e 83

Boolean Expressions
as Decisions

n  Boolean expressions can be used as
control structures themselves.

n  Suppose you’re writing a program that
keeps going as long as the user enters
a response that starts with ‘y’ (like our
interactive loop).

n  One way you could do it:
while response[0] == "y" or response[0] == "Y":

Python Programming, 2/e 84

Boolean Expressions
as Decisions
n  Be careful! You can’t take shortcuts:

while response[0] == "y" or "Y":

n  Why doesn’t this work?
n  Python has a bool type that internally uses 1

and 0 to represent True and False,
respectively.

n  The Python condition operators, like ==,
always evaluate to a value of type bool.

Python Programming, 2/e 85

Boolean Expressions
as Decisions

n  However, Python will let you evaluate
any built-in data type as a Boolean. For
numbers (int, float, and long ints), zero
is considered False, anything else is
considered True.

Python Programming, 2/e 86

Boolean Expressions
as Decisions
>>> bool(0)
False
>>> bool(1)
True
>>> bool(32)
True
>>> bool("Hello")
True
>>> bool("")
False
>>> bool([1,2,3])
True
>>> bool([])
False

Python Programming, 2/e 87

Boolean Expressions
as Decisions

n  An empty sequence is interpreted as
False while any non-empty sequence
is taken to mean True.

n  The Boolean operators have operational
definitions that make them useful for
other purposes.

Python Programming, 2/e 88

Boolean Expressions
as Decisions

Operator Operational
definition

x and y If x is false, return x.
Otherwise, return y.

x or y If x is true, return x.
Otherwise, return y.

not x If x is false, return True.
Otherwise, return False.

Python Programming, 2/e 89

Boolean Expressions
as Decisions
n  Consider x and y. In order for this to be

true, both x and y must be true.
n  As soon as one of them is found to be

false, we know the expression as a
whole is false and we don’t need to
finish evaluating the expression.

n  So, if x is false, Python should return a
false result, namely x.

Python Programming, 2/e 90

Boolean Expressions
as Decisions

n  If x is true, then whether the expression
as a whole is true or false depends on
y.

n  By returning y, if y is true, then true is
returned. If y is false, then false is
returned.

Python Programming, 2/e 91

Boolean Expressions
as Decisions

n  These definitions show that Python’s
Booleans are short-circuit operators,
meaning that a true or false is returned
as soon as the result is known.

n  In an and where the first expression is
false and in an or, where the first
expression is true, Python will not
evaluate the second expression.

Python Programming, 2/e 92

Boolean Expressions as
Decisions
n  response[0] == "y" or "Y“

n  The Boolean operator is combining two
operations.

n  Here’s an equivalent expression:
(response[0] == "y") or ("Y")

n  By the operational description of or, this
expression returns either True, if
response[0] equals “y”, or “Y”, both of which
are interpreted by Python as true.

Python Programming, 2/e 93

Boolean Expressions
as Decisions

n  Sometimes we write programs that
prompt for information but offer a
default value obtained by simply
pressing <Enter>

n  Since the string used by ans can be
treated as a Boolean, the code can be
further simplified.

Python Programming, 2/e 94

Boolean Expressions
as Decisions
n  ans = input("What flavor fo you want [vanilla]: ")

if ans:
 flavor = ans
else:
 flavor = "vanilla"

n  If the user just hits <Enter>, ans will
be an empty string, which Python
interprets as false.

Python Programming, 2/e 95

Boolean Expressions
as Decisions

n  We can code this even more succinctly!
ans = input("What flavor fo you want [vanilla]: ")
flavor = ans or "vanilla“

n  Remember, any non-empty answer is
interpreted as True.

n  This exercise could be boiled down into
one line!
flavor = input("What flavor do you want
 [vanilla]:”) or "vanilla"

Python Programming, 2/e 96

Boolean Expressions
as Decisions

n  Again, if you understand this method,
feel free to utilize it. Just make sure
that if your code is tricky, that it’s well
documented!

